Comparative Semantics for a Parallel Contextual
Logic Programming Language'

Jean-Marie Jacquet? and Lufs Monteiro®

Abstract

The purpose of this paper is to present and compare six semantics, ranging in the
operational, declarative and denotational types, for a paralle]l version of contextual logic
programming. Three operational semantics are first discussed. They all rest on a transition
system but differ in their ability of describing success sets, failure sets, infinite computa-
tions and of handling multiple occurrences of computations. Two declarative semantics are
then described. They extend, respectively, the Herbrand interpretation and the immedi-
ate consequence operator to our contextual framework. Finally, a denotational semantics
based on processes, structured as trees, is given. The mathematical tools mainly used for
these semantics are complete lattices for the declarative semantics and metric spaces for
the other ones.

The parallel logic language under consideration is an elementary one: it uses or-
parallelism and and-parallelism in an unrestricted manner. A reconciliation calculus is
provided as a way of combining substitutions resulting from the reductions of conjoined
goals. Despite its simplicity, we believe that the parallel language still constitutes a model
of interest since it captures the basis of contextual logic programming and of parallel logic
programming

1 Introduction

Contextual logic programming ([MP89]) is an extension of the logic programming
paradigm based on the idea of having both local and context-dependent predicate
definitions. A language is proposed for supporting local definitions of predicates
of the kind provided by systems of modules, and context-dependency in the form
of predicate definitions implicitly supplied by the context. On the one hand, the
clauses comprising a program are distributed over several modules (or “units”, as
they will be called here), and in that sense a predicate definition is local to the
unit. where the corresponding clauses occur. On the other hand, the definition of a
predicate may depend on predicates not defined in the same unit, and in that case
the definitions available in the context for those predicates are assumed by default.

We turn in this paper to a quite simple parallel version of the contextual logic
programming framework. [t just involves and-parallelism and or-parallelism without
any concern for guard-like constructs, commitment, read-only annotations, mode
declarations or other suspension constructs. We shall also not tackle negation here.
However, our purpose is not to provide the reader with a practical parallel contextual
logic language nor to discuss some parallel implementation. It is semantical and,
more precisely, it consists of presenting and of relating semantical models for it.

1Part of this work was carried out in the context of ESPRIT Basic Research Action (3020)

Integration
2(entre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The

Netherlands]
Wyepartamento de Informética, Universidade Nova de Lisboa,2825 Monte da Caparica,

Portugal

196

With respect to this aim, we believe that the parallel contextual logic language
treated here—subsequently referred to as CLL—is of interest since it captures the
basis of contextual logic programming and of parallel logic programming. As an
additional argument, our future research (under development) for more practical
and more elaborated concurrent contextual logic languages will be based on the
results exposed here.

The paper presents and compares six semantics issued from the logic program-
ming and imperative traditions and ranging in the classical operational, declarative
and denotational types. And-parallelism is treated in a quite close way to real con-
current executions : to allow a goal to progress from one step, it is sufficient that
one of its subgoals performs one step, although all of them are allowed to do so.
Restated in other terms, in contrast with work such as [BKRP89], our modelling of
and-parallelism includes the interleaving perception of parallel computations as well
as the true concurrent one. For simplicity of the exposition, or-parallelism is not
treated in the same way but more implicitly as a choice. Some parallelism is however
still captured in the sense that no order is imposed on the way clauses should be
selected for reduction. It should also be noted that our modelling of or-parallelism
and and-parallelism allows to capture the different (concurrently executed) and/or
search subtrees, corresponding, in the parallel framework, to SLD-derivation paths.
Repetition of such subtrees is furthermore taken into account in some semantics by
means of multi-sets.

Our six semantics are composed of three operational semantics, two declarative
semantics and one denotational semantics. Four of them, namely the operational
semantics Og,, and Otq, and the two declarative semantics Decly, and Decly, take
place in the logic programming tradition. The other ones, called Oy and Den, are
issued from the imperative tradition, especially from its metric branch.

The operational semantics Oy, rests on the so-called bottom-up derivation rela-
tion. It describes successful derivations of goals in a bottom-up fashion but does not
produce any substitution. It is however interesting since it is close to the declarative
reading of the clauses and thus help, in the one hand, in understanding the declar-
ative semantics and, on the other hand, in relating the operational and declarative
semantics.

The operational semantics Oy, also rests on a derivation relation. It describes
the derivation in a top-down manner and associates a computed answer substitution
with each of them. It thus corresponds to the classical success set and failure set
characterizations of programs.

The two declarative semantics Decly, and Decls, are based on model and fixed-
point theory, respectively. They generalize the notions of Herbrand interpretation
and consequence operator for classical Horn clause logic in order to take into account
the context dependency of the truth of formulae. As suggested, an effort has been
made to keep these semantics as simple as possible as well as in the main streams of
logic programming semantics. However, context-dependency and parallel executions
raise new problems, for which fresh solutions are proposed.

The third operational semantics On completes the operational description of
Opy and Oyq by handling multiple occurrences of computations as well as infinite
computations. It furthermore tackles more closely the computation steps and, there-
fore, makes the modelling of and-parallelism fully apparent. Technically speaking,
it is based on computation histories represented as streams of actions. Multiplicity
of occurrences is handled by means of multi-sets.

The denotational semantics Den, defined as usual compositionally, further de-
tails the computation by handling choice-points i.e. points of possible alternatives

197

of use of unifiable clauses. It uses (as usual, too), processes organized in tree-like
structures.

Although they are of classical inspiration, these last two semantics still present
some originality with related work ([BZ82], [BKMOZ86], [BM88], [B88], [KR88],
[BK88], [BKRP8Y], ...). It arises essentially from the four following points :

i) our concern with contextual logic programming, which has not been done
before and which requires new solutions;

ii) the novel way (including interleaving and true concurrency) in which paral-
lelism is modelled;

iii) the handling of multiple occurrences of computations;

iv) our use of local state and of reconciliation to combine them, which allows to
define the denotational semantics more simply; in particular, the processes
are expressed here just in terms of very intuitive computation steps - input
substitutions, actions and output substitutions - rather than functions.

The semantical tools mainly used in this paper are of four types : sets, multi-sets,
complete lattices and metric spaces. Despite this variety, the semantics have been
related throughout the paper. Lack of space prevents us however from giving proofs.
Nevertheless, all the propositions stated hereafter have been proved in [Mo89] and
[Ja90].

The remainder of this paper is organized into 8 Sections. Section 2 describes
the basic constructs of the language and explains our terminology. Section 3 recalls
the basic semantical tools used in the paper. Section 4 presents (and compares) the
three operational semantics according to their power of expression : Opy, Ot and
Och. Section 5 discusses the declarative models Decl,, and Decly and connects them
with the operational semantics. Section 6 specifies the denotational semantics Den
and compares it with the operational semantics O., and, consequently, in view of
previous results, to the other semantics. Finally, section 7 sums up the relationship
established in the paper and gives our conclusions.

2 The language CLL

As usual in logic programming, the language CLL comprises denumerably infinite
sets of wariables, functions and predicates, subsequently referred to as Svar, Sfunct
and Spred, respectively. It also includes a set Sunit of so-called unit names, charac-~
terized by the property that every element u has attached a finite subset of Spred,
called the sort of u and denoted by sort(u). The sets Svar, Sfunct, Spred and Sunit
are assumed to be pairwise disjoint.

The notions of term, atom, clause, substitution, unification, ...are defined as
usual. We do not recall them here but rather specify some contextual related notions
as well as some useful notations.

An extension formula is a formula of the form > G where u is a unit name
and G is a finite conjunction of atomic or extension formulae. A general atom (g-
atom) is an atomic or an extension formula. It is typically denoted by the letters A,
B, C, A general goal (g-goal) is a finite conjunction of g-atoms. It is typically
denoted by the symbols 4, B, C, ..., G, The empty g-goal is denoted by the
A letter. Clauses take here the form H « B and allow extension formulae to take
place in their bodies. Given an atom A= p(t1,...,tm) , we denote by name(4) the
predicate name of A, namely p. A set of clauses is said to define a predicate p if it
contains a clause whose head’s name is p.

198

A unit is a formula of the form u : U, where u € Sunit and U is a finite set of
clauses such that the set of predicates defined in U is sort(u). We call u the name
or head of the unit and U its body. A system of units is a set U/ of units such that
no two distinct units in i have the same name. For a unit in I/ with name u, we
denote its body by |u]y, or simply |u] if I is understood. In the sequel we will often
abuse language and refer to u as a unit in I{ when in fact we mean the unit u : |ul.
The set of systems is subsequently referred to as Ssyst.

A context is a stack of units. It is referred to by its name, consisting of an
arbitrary sequence of unit names. The set of context names, Scontezt, is thus the
free monoid Sunit<“. Context names are represented by juxtaposition, as in uv.
The empty sequence) is employed as the name of the empty context. The context
resulting from eztending the context ¢ with unit u (i.e. by putting u on top of the
stack) is denoted by uc.

3 Mathematical preliminaries

3.1 Sets and multi-sets

Executions may result in computing a same answer or a same computation path
several times. Multi-sets, allowing an element to be repeated, are used subsequently
to capture this repetition. To clearly distinguish them from sets, they are denoted
by adding the ms label to the {...} brackets, as in {a,a,b}m,, whereas sets are
denoted by the s label, as in {a,b},. The union symbol U is also subscripted in
this way for the same purpose. To avoid any ambiguity, let us further precise that,
given two multi-sets S and T, we denote by S U,us T the collection of all elements
of S and T repeated as many times as they occur in S and T.

The usual notations P(E) and M(E) are used to denote, respectively, the set
of sets and multi-sets, with elements from E. The notations Pr(E) and M, (E) are
moreover employed to denote those sets and multi-sets verifying the property .
For instance, Myf(E) (resp. Myco(E)) denotes the set of non-empty and finite*
multi-sets (resp. the non-empty and compact multi-sets) with elements fr~m E.

3.2 Reconciliation of substitutions

Full use of and-parallelism requires a way of combining substitutions issued from the
concurrent reductions of subgoals of a g-goal in order to form answer substitutions
for the whole g-goal. It has been provided under the name of reconciliation of
substitutions in [Ja89] and has been extensively studied there. Concurrently, an
equivalent notion, named parallel composition of substitutions, has been developed
in [Pa88] and [Pa90). We briefly recall this notion here for the sake of completeness.
The reader is referred to the above three references for more details.

The reconciliation of substitutions is based on the interpretation of substitutions
in equational terms. Precisely, any substitution § = {X;1/t1,...,Xm/tm}s is associ-
ated with the system of the equations Xy =ty, ..., X;n = ts, subsequently referred
to as syst(6). Reconciling substitutions then consists of solving systems composed
of the associated equations.

Concepts of unifiers and mgus can be defined for these systems in a straightfor-
ward way. It is furthermore possible to relate the unification of systems of equations

4To avoid confusion, we precise that a multi-set is finite iff it contains only a finite number of
elements (and thus not iff any element occurs a finite number of times).

199

with that of terms in such a way that all properties of the unification of terms trans-
pose to the unification of systems of equations. In particular, mgus of systems can
be proved to be equal modulo renaming. We consequently use, in the following, the
classical abuse of language and speak of the mgu of a unifiable system. It is referred
to as mgu_syst(S), where S is the system under consideration.

We are now in a position to define the notion of reconciliation of substitutions.

Definition 1 The substitutions 81, ..., 0, (m > 1) are reconcilable iff the system
composed of the equations of syst(61), ..., syst(6m) is unifiable. When so, its mgu
is called the reconciliation of the substitutions. It is denoted by p(61,...,0m). m

The equational interpretation of substitutions requires, at some point, the idem-
potence of the substitutions. This is not a real restriction since any unifiable terms
or systems of equations admit an idempotent mgu. It is furthermore to our point
of view the natural one. For ease of the discussion, we will take the convention
of using, from now on, idempotent substitutions only. Their set is referred to as
Ssubst.

3.3 Complete lattices and metric spaces

Complete lattices and metric spaces will be used as important semantical tools.
The reader is assumed to be familiar with them as well as with their related no-
tions of convergent sequences, directed, closed and compact subsets, completeness,
continuous and contracting functions He is also assumed to be familiar with
Tarski’s lemma, describing the set of prefixed points of continuous functions of com-
plete lattices, and Banach’s theorem, stating the existence of a unique fixed point
of contractions in complete metric spaces. He is referred to [L187] and [En77], when
need be. Furthermore, lack of space prevents us from describing all the metrics
used in this paper. We will however employ essentially the classical ones and refer
to [B88] for such a description. The only exception to this rule concerns the metric
on multi-sets that we now make precise.

Proposition 2 Let E be some set and let L be an element not in E. Let
furthermore® .[.]: Ex N — EU, {L}, e a function such that,
i) for any e € B : €[0] =1;

i) for any e,f € E :if e[n] = f[n], for all n € N, then e=f;

#1) for any e € BE,m,n € N : (e/m])[n]=e[min{m,n },].
Such a function is subsequently called truncation. Define, for any S € M(E) and
n € N, S[n/ as the multi-set {s/n] : s € S}m,. Furthermore, define, for any e,f € E,
S, Te M(E),

dE(E,ﬂ — 2—sup{n:e[n]=_f[n]},;

dma(57 T) = 2—aup{n:5[n]=T[n]},'

Then, the space (E,dg) is a metric space. Moreover, the spaces (Mny(E),dms) and
(Maco(E),dms), where compactness® is taken with respect to dg, are metric spaces.
They are complete if (E,dg) is complete. =

5We denote by N the set of non negative integers.
6Compactness is extended straightforwardly from sets to multi-sets : a mutli-set M is compact
iff any sequence of elements of M contains a subsequence converging to an element of M.

200

4 OQOperational semantics

4.1 Bottom-up derivation

The first characterization of the operational semantics of CLL is expressed in terms
of the notion of bottom-up derivation. Its interest arises from its closeness to
the “declarative” reading of clauses. It is twofold. On the one hand, it helps in
understanding the declarative semantics, to be presented in section 5. On the other
hand, it helps in proving the equivalence between the operational and the declarative
semantics.

The notion of bottom-up derivation is characterized indirectly by defining a
“bottom-up derivation relation”. It takes the form c li'l; G, for a system of units
U, a context name c and a g-goal G. The intended meaning is that every ground
instance of G is true in the situation represented by the context c. The relation

irz; is defined more formally by means of rules of the form

-%s%}z—i—ﬁ% if Conditions,

asserting the Conclusion whenever the Assumptions and Conditions hold. (Note
that Assumptions and Conditions may be absent from some rules.) Precisely, it is
defined as the smallest relation of Ssyst X Scontext x Sgoal satisfying the following
rules (N-B) to (E-B), by case analysis on the form of G. The notation Sinst(U) is
used to denote the set of all (possibly non-ground) instances of clauses in U, and

Izzl is written simply as - , for readability.

Null formula
N-B —
(N-B) cF A
Conjunction

(C—B) C I:u A; 2:0C ff'u Am
cF ALLLA,LL

Atomic formula—Ilocal reduction

bu —
(R-B) uckb B it H B e Sinst(|u|)

wk H
Atomic formula—contextual definition
bu
(X-B) cb A if name(A) ¢ sort(u)
uck A
Eztension formula
b=
EB) —wEC
cFu>»G

The first three rules are essentially the same as for Horn clause logic. They
state, respectively, that true can be derived in any context, that a conjunction
is derivable if its conjuncts are, and that the head of a clause is derivable if its
body is. The rule (X-B) explains the meaning of contextual definition: an atom is
derivable in a context whose top unit does not define the atom’s predicate name if
the atom is derivable in the context with the top unit removed. The last rule (E-B)
characterizes context extension: an extension formula is derivable in a context if the
“inner” conjunction is derivable in the context extended with the unit mentioned
in the extension formula.

201

Definition 3 Let 6~ and 6% be two fresh symbols. The bottom-up operational se-
mantics of CLL is the function Op,, : Ssyst — Scontezt — Sgoal — {6~,6%}, defined
as follows: for any UESsyst, c€Scontext and GESgoal,

O U)(0)(©) = { 8%, fer, G .

6=, otheruise

4.2 Top-down derivation

The operational semantics Opy does not deliver that much information, just the
possible existence of a successful derivation. The purpose of any computation is
however far more richer: to compute bindings for the variables of the query. The
notion of successful top-down derivation allows precisely to capture such an idea.
Given a system of units I/ and a g-goal G, it consists of a sequence of steps reducing
G to the null conjunction. Associated with it, there is a substitution 8 representing
the values computed for the variables of G. The expected result (presented in
section 5) is that the universal closure of Gf is a logical consequence of I/, and that
any instance of G which is a consequence of If can be obtained as instance of G8
for some computed substitution 6.

As before, the top-down derivation is not specified directly, but by means of a
top-down derivation relation. For any context name c and g-goal G, ¢ li‘; G (a1,
or more simply ¢ el [6] when U is understood, denotes the fact that there is a
(successful) top-down derivation of G in ¢ from U with substitution 6. Again, iiz
is formally defined as the smallest relation of Ssyst x Scontext x Sgoal x Ssubst
satisfying the rules below. The symbol € denotes the empty (identity) substitution.

Null formula
N-T —_—
() ckH A €]
Conjunction
1) LE A cF ALy

cE AvvAn (p(61, .., 0m))

Atomic formula—Iocal reduction

= By . He—Be/
R-T uci: Bl (0] {
() uck A fo) f 8 = mgu(A,H)

Atomic formula—conteztual definition

(X-T) CFAB i name(A) ¢ sort(u)
uck A4

Eztension formula

(E-T) __‘JIC_EEIQ]_

cFu>GH

These rules have a reading similar to the bottom-up case. For example, rule
(C-T) states that in order to derive a g-goal we must derive each g-atom and then
reconcile the resulting substitutions.

The relationship between the top-down and bottom-up derivations is established
by the following proposition.

7 As usual, a suitable renaming of the clauses is assumed.

202

Proposition 4 If ¢ Ll [6] then ¢ £ G8. Conversely, if c F* G, and G, is an
instance of _G_, there is a substitution 8 such that ¢ G [6] and G, is an instance

of G6.]

The top-down operational semantics can now be characterized. As may be seen
in the following definition, it corresponds to the usual notion of success set and
failure set.

Definition 3 Define the top-down operational semantics as the following function
Oyq : Ssyst — Scontezt — Sgoal — P(Ssubst): for any 4 € Ssyst, ¢ € Scontext, and

T € Sgoal, 0a(U)(0)(C) = {8 : ¢y, G 8]} -

The following result relating O, and Oyq is an immediate consequence of the
previous proposition.

Proposition 6 Let ay : P(Subst) — {6§~,6%}, be the function defined as

i) al(ﬁ) =6
i) ay(T) =6, if T#D
One has Opy = @10044. -

4.3 Computation histories

Although more powerful than Op., the operational semantics Oyq4 suffers from two
problems: it cannot cope with infinite computations and cannot distinguish multiple
occurrences of computations. The operational semantics O, is introduced as a
remedy. It essentially delivers the histories of the computations rather than just
their results and collects all their repetitions. The main technicalities used for
that purpose are as follows. Repetition is captured by using multi-sets rather than
sets. Histories are modelled by words whose elements represent the multi-set of
unifications and context updates (namely the basic operations of CLL) performed
at each step, as well as.the two termination status, failure and success. These
histories are formally identified by means of a labelled transition system, in the
style of [P181], whose labels correspond to the multi-sets of basic actions and whose
configurations are some generalization of the goals. This extension is justified by
the fact that, in order to represent truly concurrent executions, any g-atom of any
g-goal must operate in a private working memory space, namely its own state and
its own context.

This intuition given, let us define O, more precisely. The following notation
and definitions specify the concepts sketched above.

Notation 7 (Histories) The notations unif(A,B), cxt_ext(c,u) and cxt-pop(c) are
used to represent the actions of unifying the atoms A and B, of extending the context
¢ by the unit u, and of poping the context ¢, respectively. The set of such basic
actions is referred to as Sact. The set of words formed from Mny (Sact) and which
finite elements are ended by one of the terminator operators §~, representing failure,
and &%, representing success, is referred to as Shist. Elements of Shist are called
histories.]

Definition 8 (Extended g-atoms and goals) Extended g-atoms (eg-atoms) are
constructs of the form A in < g,c > where A is a g-atom, o is a substitution and
c s a context. They are typically denoted by the letters A, B, C, Extended

203

g:go~als~(eg-g0§!s) are conjunctions of eg-atoms. They are typically referred to as

A, B, G, ..., G, The empty eg-goal is denoted by the Nyt symbol. The set of
eg-goals is referred to by Sextgoal. Finally, (A1,...,Am)in < o,¢ > is defined as
the eg-goal (A1 in <0g,¢>), ..., (Apin <o,c>). B

Definition 9 (Transition relation) The transition relation used for specify-
ing the operational semantics O, is defined as the smallest relation — of
Ssyst X Sezxtgoal X My ;(Sact) x Sextgoal satisfying the followmg rules (R-H) to
(C-Hs). For ease of reading, the more suggestive notation G L G*is employed
instead of (I4,G,1, G"’)

Atomic formula - local reduction
(H—B) € |uf
(R-H) it Ao and H are unifiable

Ain < g,uc> 4 Bin< o* ue > o* = comgu(Aoc,H)
1= {unif(Ac, H)}me

Atomic formula-—contextual definition
(X-H) name(A) ¢ sort(w)

f
Ain <o,uc> LN Ain<o*,e> { 1 = {czt-pop(uc)}ms

Extension formula

(B-H) p— = if 1= {cazt-ezt(c,u)}ms
u>>G’in<rf,c>—l-vGin<a,uc> { (&)}

Conjunction

.
(C-H,) —% (C-Hy)

A *B A

a;zsz
i

Al A*B
(C H3) A,B I Umaly A*B* ™

Rules (R-H), (X-H) and (E-H) essentially rephrase the rules (R-T), (X-T) and
(E-T) defining how atoms and extension formulae should be treated. Rules (C-
H;), (C-H2) and (C-H3) define the and-parallel execution of conjoined eg-atoms. It
is worth noting that, thanks to rules (CH;)and (C-Hj), all eg-atoms need not be
reduced in one step in order to allow the whole conjunction to perform one reduc-
tion step. Such maximal parallel executions can however take place thanks to rule
(C-Hj). Our modelling of and-parallelism is thus very close to the real practical
operational executions: it expresses concurrent executions waiting for some pro-
cessing resource as well as the fully concurrent executions when enough computing
resources are available. Reformulated in a more conceptual level, our modelling of
and-parallelism subsumes the interleaving approach to concurrency as well as the
truly concurrent one (assuming, as usual, that all unfications take the same amount
of time). Notice finally that no reconciliation takes place in the rule (C-Hjz). Indeed,
conjoined eg-atoms of a g-goal are first reduced before reconciliation is performed
to determine the answer susbstitution for the whole g-goal. Hence, no reconciliation
is present in the computation histories, capturing the only computed unifications
and context operations. It will however be used to relate O;q and Oc.

8 As usual, a suitable renaming of the clauses is assumed.

204

We are now in position to define the operational semantics O.x. Note that
the finitely branching property of the transition relation is not sufficient to ensure
that the codomain of O and O, is composed of non-empty and finite multi-sets of
histories. However, it is strong enough to ensure that it is composed of compact
ones.

Definition 10
1) Define O : Ssyst — Seztgoal = Mnco(Shist) as follows : for any U € Ssyst,
any G € Sextgoal®,

OB = {hb-dnb=: G A 20 I A Aar, A 2 Fma
1)

Ume{li la. -y 8t 1 G 25 A7 22 0 % A}
~ _— ~ L.
Uma{lidoe oyt G 20 Ay B B 028y

2) Define the computational history operational semantics as the following
function Ocp : Ssyst — Scontest — Ssubst — Sgoal — Muco(Shist): for any
U € Ssyst, any c € Scontezt, any o € Ssubst, any G € Sgoals,

Oa(U)()(e)(@) = OU)(Gin <o,c>). n

It is worth noting that the auxiliary function O can be related to the fixed point
of the following higher-order contraction ¥,, reflecting the recursive nature of O.
This property combined with the fortunate circumstance that contractions have one
fixed point will be usefull later to relate Ocx with the denotational semantics Den.

Definition 11 Define U,, : [Ssyst — Sextgoal — Preo(Shist)] — [Ssyst —
Sexztgoal — ?(Shistl]_ as follows: for any F € [Ssyst — Seztgoal — Pnco(Shist)],
any U € Ssyst, any G € Sextgoadl,

‘IJOP(F)(Z’{)(E") = {6_ : E’ 75 Deat, a ad }a Us {6+ : a = Aemt}s
U{l.h: G =5 G* h e FU)(GH}.. n

Proposition 12
1) The function ¥,y is a contraction from [Ssyst — Sextgoal — Pnco(Shist)] to
[Ssyst — Sextgoal — P pco(Shist)].
2) Let 8 : M(Shist) — P(Shist) be the function that transforms any multi-set in
the corresponding set, namely the function defined by B(M) ={m:m € M},
for any M € M(Shist). The function BoO is a fized point of Wop. u

It is here worth noting that using multi-sets instead of sets in the above defini-
tion makes ¥,, a non-contracting function. In fact, this multi-set version, say ¥7,,
has an infinite number of fixed points, obtained by progressively duplicating com-
putation paths in O. Hence, multiplicity cannot be handled suitably at the stream
level by contractions. This fact will force us to use two arguments to relate O, and
Den: the classical contracting argument to establish that elements are preserved
and an additional argument to prove that the multiplicity of occurrence of elements
is also conserved.

9The multiplicity of occurences of elements of the multi-sets is left unformal and intuitive for
the sake of clarity. A precise formal definition can however be stated by extending the transition
relation with an additional argument specifying the points of duplication of transitions.

205

We conclude this section by relating the operational semantics Oz and Ogp.
Roughly speaking, all we have to do is, for each history, to perform all the unifi-
cations it contains and to reconcile the results. This is more precisely achieved by
means of the three following functions.

Definition 13
1) Define eq-act as follows: for any I € Sact,

{A =B}, ifl=unif(A,B)
0 if |= cxt_ext(c,u) or | = czt_pop(c)

eg-act(l) = {
2) Define mgu._syst_hist as follows: for any h € Shist, mgu_syst_hist(h) is

{mgu_syst(U, Us eg-act(a))}s, if h=Hh..... Ln.6F
: 1

i=1,...,m agl;

@, ifh=1"h..... Im.6= or if h is infinite
8) Define ay as follows: for any MH € Myco(Ssyst),

as(MH)= Us {mgu_syst_hist(h)},.

heMH =

Relating O:q and O, then consists of noting, by an inductive reasoning on

reductions and histories, that, for any system U, any context c and any g-goal G,
O:a(U)(c)(G) and [og 0O.4](U)(c)(€)(G) are identical.

Proposition 14 For any U € Ssyst, any ¢ € Scontext, G € Sgoal, one has

O02a(U)(e)(G) = [20 Oen) (U) () (€)(G). =

5 Declarative semantics

5.1 Model theory

The operational semantics is concerned with proof, the declarative semantics with
truth. The declarative semantics of a system of units is characterized by the set of
g-goals that are true in every model of the system of units. The purpose of this
section is to show how such semantics can be defined.

The first task is to find an appropriate notion of interpretation for CLL. An
interpretation of Horn clause logic is a subset of the Herbrand base, intended to
record the set of all facts that are true under the interpretation. In CLL, which
facts are true depend on the context. An interpretation of CLL must thus provide
a way to associate a subset of the Herbrand base with every context. Such subsets
are called “situations”.

Let Sy(c) be the situation associated with the context ¢ under the interpretation
I. One must have S7()\)=0 since no facts are true in the empty context. Moreover,
the situation Sr(uc) must be the “update” by u of the previous situation Sy(c),
and consequently the equality Sy(uc)=I,(Sr(c)) must hold for some function I,
depending on u. A unit name u is then interpreted as a “situation update” I,
formalized as a mapping from situations to situations. Furthermore, given the
intended meaning of context extension, such a function must redefine the predicates
defined in the unit and leave the other predicates unchanged. The required notion
of interpretation is then a family of updates I, indexed by u € Sunit. These ideas
are now made precise.

206

Definition 15 The Herbrand base of CLL is as usual the set HB of all ground
atoms built with Sfunct and Spred. A situation is a subset of HB. If P C Spred and
S C HB, the restriction of § to P is the set S| [Pl = {p(t1,.. . ,ta) € S: p € P},. To
simplify the notation, S| [Spred-P| is abbreviated to S| [-P] . B

Definition 16 A continuous mapping t : P(HB) — P(HB) is called an update
with respect to P C Spred if, for every S C HB, it satisfies the two following condi-
tions:

i) Preservation: ¢($) | [-P] = S| [-P] (atoms with names not in P are preserved

by t).
it) Dependency: ¢(§) = (S| [-P]) (the update depends only on the preserved
atoms). u
Definition 17 An interpretation I of CLL is a family I = (L), Syn;t, where each
I is an update with respect to sori(u). =

Definition 18 Given a situation S, a finite set F of formulae and an interpretation
I, the fact that the formulae in F are true in S with respect to I, denoted S =1 F,
is defined by the cases below. Let ground(F) be the set of all ground instances of
formulae in F. Let us furthermore write S |=1 f instead of S =1 {f}s.
i) Sets: Sk=1 Fif and only if S =1 f for every f€ F.
i) Units: § b= w:Uif and only if I,(S) 1 U.
iii) Clauses : S k1 He—B if and only if S |=1 Hy+«—B, for dall (Hy—Bp) €
ground(H—B).
i) Ground clauses : § |=1 H—B if and only if § |= H whenever § =1 B.
v) Ground extension formulae: § |1 u> G if and only if L,(S) =1 G-
vi) Ground atomic formulae : S |1 A if and only if A € S. "

The way this relation is defined is standard, with the possible exception of units
and ground extension formulae. A unit is true in a given situation if the body is true
in the situation updated by the denotation of the unit name. Extension formulae
are interpreted similarly.

The notion of model, central for the declarative semantics, can now be defined.

Definition 19 An interpretation I is a model of a set F of formulae if S |=1 F for
every § C HB. A formula f is a consequence of F, denoted F [f, if every model
of F is a model of f. m

The case of interest is when F is a system of units &/ and f is a g-goal G. The
(model-theoretic) declarative semantics will now be defined for this case. In the next
definition, for a context name ¢ = uj...u,, c>> G will be used as a shorthand for
the extension formula u,>>...>u;>G.

Definition 20 Define the declarative semantics Decl, : Ssyst — Scontext —
Sgoal — P(Ssubst) as follows: for any U € Ssyst, ¢ € Scontext, and G € Sgoal:

Decly, (U)(c)(G) = {8 : VGy € ground(G8),U = c> Gols. "

5.2 Fixed-point theory

The models of a system of units I/ can be characterized as the prefixed points of
a continuous operator Ty : Sint — Sint associated with I/, where Sint is the set
(complete lattice) of all interpretations. This characterization has two important

207

consequences that follow directly from Tarski’s lemma. The first is that ¢/ always
has a minimal model My, given by the least fixed point of Ty. The second is that
there is a standard iterative procedure for computing the least fixed point of Ty,
and hence M. These facts are used to define a fixed-point semantics Decly.

First, note that the set Sint of all interpretations I = (Iy)yeSunie, partially
ordered by I < J if and only if Iu(S) C Ju(S) for every u € Sunit and S C HB, is
a complete lattice. The mapping Ty : Sint — Sint associated with I{ can now be
defined.

Definition 21 Let Ty : Sint — Sint be the mapping defined as follows : for every
interpretation I, Ty (1) is the interpretation J such that

Ju(8) = (S| [-sort(u)]) Us {4 : 3(A—B) € ground(|u|), Iu(S) =1 B},
for every u € Sunit and S C HB. L]

This maj.ping is well defined (that is Ty (I) is an interpretation, for every inter-
pretation I) and continuous. Moreover, it can be shown that an interpretation Iis a
model of i/ if and only if Ty(I) < 1. By Tarski’s lemma, Ty has a least fixed point,
which therefore is also the least model of I/. This statement is the contents of the
next proposition.

Proposition 22 FEuvery system of units U has a minimal model My, given as the
least fized point of Tyy. =

The fixed-point semantics is defined in terms of the least fixed point of Ty, as
usual.

Definition 23 Define the fixed-point semantics Decl; : Ssyst — Scontezt —
Sgoal — P(Ssubst) as follows: for any U4 € Ssyst, c € Scontext, and G € Sgoal:

Decl; (U)(c)(G) = {8 : VG, € ground(GH),0 Fu, <> Gols,
where My is the minimal model of U.]

The equivalence between the declarative and the fixed-point semantics is based
on the following observation. There are two quantifications involved in the conse-
quence relation I/ = G, one over all models of I/ and the other over all situations.
It is possible to eliminate both, by considering only the minimal model of I/ and
the truth of G in the empty situation with respect to that model.

Proposition 24 For every system of units U and g-goal G, U = G if and only 3f
0 =m,, G. In particular, the declarative and the fized-point semantics coincide, that
is Declm=Decly. ']

The remainder of this section describes the connection between the operational
and the declarative semantics. The relationship between the bottom-up derivation
and the consequence relation = is established via the association of a situation
with every context.

Definition 25 Let I be an interpretation of a system of units U. For every context
name c, the situation Sy (c) determined by c under I is defined inductively as follows:

i) 510) =0,

208

#) Sr(uc) = Iu(Sr(c))- =

Proposition 26 Given o system of units U with minimal model M, a context
— bu — . an

name ¢ and a g-goal G, one has ¢k, G if and only if Spe) Em Go for every

Go € ground(G). m

The equivalence between the bottom-up operational semantics and the declara-
tive semantics is an easy consequence of the previous result.

Proposition 27 One has Oy, = oy oDecly. 'l

The next result relates the consequence relation to the top-down derivation
relation.

Proposition 28 If Gy is a ground instance of a g-goal G and if ¢ is a context
name, then Syr(c) =v Go if and only if ¢ F"L ‘G[6] for some substitution 8 such that
Gy is an instance of GB. =

It is now easy to establish the equivalence between the top-down operational
semantics and the declarative semantics.

Proposition 29 Let ay : P(Ssubst) — P(Ssubst) be defined as follows: for every
% € P(Ssubst), a3(T) = {00 : 0 € £,0 € Ssubst},. One has Decl, = a3 00,y. m

6 Denotational semantics

This section introduces our last semantics. It makes no use of transition systems
and no reference to any declarative paradigm but is defined compositionally on the
basis of processes. They may be formally described as multi-sets of computation
steps followed by new processes, each computation step being described as an input
multi-set of substitutions, a multi-set of basic actions!® and an output multi-set of
substitutions. They are organised in tree-like structures to capture the place of the
various choice of use of clauses. Two auxiliary processes, p*and p~, are furthermore
introduced to indicate termination in the successful and failure status. In view of
this rough introduction, the set of processes Sproc could be recursively defined by
the equation

Sproc = {p*,p~}s Us Many(Scstep x Sproc) (1)

where Scstep!! is M., ¢(Ssubst) x M (Sact) X M.z (Ssubst). Recursive equations
of this type have been solved in a metric setting in [BZ82] and [AR89]. The careful
reader will however note that no multi-sets are tackled in these references and, fur-
thermore, that, to apply their results, M s(Scstep x Sproc) should be endowed with
a distance, which cannot be inferred from previous definitions unless a truncation
on Scstep X Sproc is clearly specified. Anyway, the simplicity of the equation (1)
allows us to solve it directly. This is achieved as in [BZ82], by first defining an aux-
iliary space Sfproc, by then endowing it with a distance d and by finally defining
the metric space Sproc as the completion of (Sfproc,d). We will furthermore take
profit of this direct solving to restrict the processes to those verifying the following
property:

the multi-sets of the initial substitutions of the first computation @)
steps are identical.

10Recall notation 7 of section 4.3.
!Read Scstep as the set of computation steps.

209

Definition 30 Define the set of finite processes Sfproc inductively by the following
rules :
i) p*,p~ € Sfproc
4) if wy = (A1,5,71),..,wm = (Am, Sm, Tm) € Scstep, py,...,p,, € Sfproc,
m>0and Ay = ... = A, then {(w1,p,),-..,(Wm,Ppm)}ms € Sfproc. B

Endowing Sfproc with a distance can be achieved by considering the union of
the equation (1) as disjoint and by defining the truncation function .[.] on processes.

Definition 31 Define the truncation function .[.] on Sfproc by the following rules:
i) p[0] = L, for any p € Sfproc,
i) pt[n] = p*, for any n >0,
iii) p~[n] = p~, for any n >0,
) {(w1,P1)s s (Wms P) Yrmsll] = {1, ..., Wm}rma,
for any wy,...,wm € Scstep, pq, ..., P, € Sforoc,
‘U) {(wlvpl)’ L] (wm, Pm)}ma[n] = {(“"17171[7" - 1])1 EERE) (wmw pm[n - 1])}"1-3:
for any w,...,wm € Scstep, py,...,p,, € Sfproc, n > 1. "

Definition 32 Define the metric on Sfproc as follows:
i) d(p*,p*) =d(p~,p7) =0,
i) d(p~,p) =1=d(p,p~), for any p € Sfproc, distinct from p~,
i) d(p*,p) =1 = d(p,p*), for any p € Sfproe, distinct from p*,
i) d(py,Py) = dma(py,py), for any py, p, € Sforoc, distinct from ptandp™. =

The metric space of processes Sproc is then defined from the space of finite
processes Sfproc by taking in addition all limits of Cauchy sequences of Sfproc.
This is achieved precisely by defining Sproc as the completion of (Sfproc,d). Two
interesting properties of these new processes is that their structure ressemble that
of finite processes and that they do verify property (2). The common value of these
A;’s of any process p is subsequently referred to as init(p). ;

Defining a compositional semantics requires to define an operator || equivalent
at the denotational level to the parallel composition operator “” between g- atoms.
It is defined according to our modelling of parallel composition of section 4.3 and by
means of a suitable contraction to handle correctly recursivity with infinite struc-
tures. Note that, because of the tree-like structure of the processes, the contractivity
problems of ¥7, do not occur here.

Definition 33 Define ¥ : [Sproc X Sproc — Sproc] — [Sproc x Sproc — Sproc]
as follows: for any F € [Sproc X Sproc — Sproc], for any p € Sproc, for any
P1, Py € Sproc\ {p*,p"}a :
i) Oy (F)(p~,p) =p~ =¥ (F)(p,p7);
i) Oy (F)(p*,p) = p= ¥ (F)(p,p*);
iii) U (F)(py,p2) =
{(w*vF(P’hP&)) : ((A1,S1,T1),p’1) € pl:((A21S2:T2)1p,2) € p2,
Wk = ((Al Urms A2)7 51 Uma SZ; (Tl Urns T2))}ma
Unns {(w, F(p’1,p2)) : (A1, 81, T1),p1) € p1, Az = init(py),
Wk = ((Al Uma A2)ySh(T1 Uma AZ))}ma
Uma {(w*, F(p1,p%)) : (A2, S2, T2),p%) € p2, A1 = init(py),
wk = ((Al Ums AZ); 521 (T2 Urmns Al))}m:- L]

Proposition 34 The function ¥)jis well-defined and is a contraction.]

210

Definition 35 Define the function ﬂ : Sproc X Sproc — Sproc as the fized point
of ¥y. B

Proposition 36 For any p;,py, ps € Sproc, (py || p2) | pa =11 || (P2 Il p3)- u

We are now in position to specify the denotational semantics Den. In view of its
compositional nature, it is mainly defined by stating the denotational meaning of the
basic cases, namely the empty g-goal and the g-goal reduced to one g-atom, which
is quite straightforward in view of the preceeding sections. As before, undesirable
problems with recursivity are avoided by means of a (well-defined) higher-order
contraction Wg.,. It is stated in terms of extended g-goals rather than g-goals
in order to ease the relationship between O, and Den. Nevertheless, a similar
contraction can be defined directly on g-goals (in a similar way) and its fixed point
can be proved equal to Den, defined as the following restriction of D.

Definition 37 Define U4, : [Ssyst —» Sextgoal — Sproc] — [Ssyst — Sextgoal —
Sproc] as follows: for any F € [Ssyst — Sextgoal — Sproc], for any U € Ssyst,

1) Paen(F)(U)(Deet) = p*
i) Uaen(F)(U)(A in < g,c¢>) =p~, if c=) or if the following conditions holds:
¢ = uc’, name(A) € sort(u), no clause of u unifiable with A.
i) Uaen(FYU)(A in < o,¢ >) = {(w1, FU)BL)), . .., @m, FU)(B))ymay if
the following conditions holds :
e ¢ = uc)
name(A) € sort(u),
Hy«Bi, ..., HpeB,, are dall the clauses of u unifiable with Ao, say
with (idempotent) mgu 6y, ..., 6,,, respectively,
wi = ({U}ma7 {'U"m:f(AU; Hi)}msa {eri}ma): for all i,
e B;=B;in < gob;,c>.
1) Yaern (F)U)(A in < o,¢>) = {{w, (U)(A in <o,¢’>)}ms,
if e=uc’, name(A) & sort(v),w = ({0 }ms, { czt-pop(c)}ms, {0 }ms)-
1) Cien(FYU) (2> Gin < 0,¢>) = {(w, FU)(Gin < 0,uc >)}ms,
where w = ({0} ms, {czt-ezt(c,u)}ms, {0} rms)-

) Caen(PYU)((A1,..., Am) in < 0,¢>)

= Vgen(F)U)(A; in <0,¢>) || oo | Yaen(U)(Amin <o,c>). =
Proposition 38 The function Vg, 1s well-defined and is a contraction.]

Definition 39
1) Define D : Ssyst — Sertgoal — Sproc as the (unique) fized point of U aen.
2) Define the denotational semantics Den : Ssyst — Scontezt — Ssubst —
Sgoal — Sproc as follows: for any U € Ssyst, any ¢ € Scontext, any
o € Ssubst, any G € Sgoal, Den(U)(c)(c)(G) = DU)(C in < o,¢>). B

We conclude this section by relating Den with the operational semantics Och.
This achieved by relating the auxiliary functions O and D. Function O handles
linear structures whereas function D manipulates tree-like structures. To relate
them, we thus first need to introduce a function that, given some tree, produces
the streams it contains. We then need to select the appropriate part of the com-
putational set of O.,, namely the action multiset part. This is the purpose of the

211

following function o4. Its recursive nature suggests to define it as the fixed point
of some higher-order contraction. However, because of the stream structure of the
results, contractivity problems already encountered for W}, makes the definition of
such a contraction impossible. Anyway, the function a4 can be defined correctly
by taking advantage of the tree-like structure of the processes, especially by defin-
ing a notion corresponding to that of predecessors in trees. This is subsequently
denoted by w —, w*, w <, %, w <, §~, with respective meaning that w is a
predecessor of w*, of §* and of 6~ in p.

Definition 40 Define ay : Sproc — M(Shist) as follows:

i) a4(p”) = {6 }ma,

i) cq(pt) = {6 }ms,
ii1) as(p) = {S1.++.Sm-6: (A1, 81, T1) —p ... = (Am,Sm, Tm) —p 6,

((A11 Slz Tl)ap‘) € p76 € {5+75—}-’}‘m-’
Ums {817+ .8m. -+ ¢ (A, 51,71) —p oo (A, Sy Tom) —p oo,
((A1,81,71),p%) € P}ms'?
for any p € Sproc\ {p*,p" },.]

Proposition 41 For any p € Sproc, as(p) is non-empty and compact.]

Relating O and D consists of proving two properties :
i) firstly that the function 48D : Ssyst — Sextgoal — M e, (Shist) defined as

(@8D)(U)(C) = e (DU)(T))

is, after composition with the function 82, a fixed point of ¥,,. As 300 is
also a fixed point of ¥,,(see proposition 12) and since contractions have only
one fixed point, it is then proved that the functions O and 48D return the
same elements. Hence, so are the corresponding restrictions O, and aséDen
(the function a48Den is defined similarly to ay8D).

secondly, that the sources of duplication of elements are the same in O and
@46D. If so, the elements of the multi-sets delivered by O and a46D oc-
cur with the same multiplicity. Taking the respective restrictions, the same
property then also holds for Oy, and aséDen.

il

Nabd

These two properties can indeed be proved so that one can claim the following
proposition.

Proposition 42 One has O = 048D and therefore Oqn = asdDen. =

7 Comparison and conclusion

The paper has presented six semantics ranging in the operational, declarative and
denotational types. Four of them are inspired by the traditional logic programming
paradigm. They consist of the operational semantics Opy and Oqq, based on the
notions of bottom-up and top-down derivations, respectively, and of the declarative
semantics Decl,, and Decly, based on model theory and fixed-point theory, respec-
tively. The two other semantics are issued from the imperative tradition, and, more

12As in definition 10, the multiplicity of elements of the multi-sets is left informal and intuitive
for the sake of clarity. A formal definition can however be achieved by inserting an additional
argument in the predecessor relation that distinguishes the nodes of the process tree.

13Recall the function 8 introduced in proposition 12.

212

Och G Den " (Prop 4)
o R

td

)

o
Oua > O (Prop 26) (Prop 28)

DY

Decl; ¢—» Decl,,

a) The minimal relations b) Equivalence of the bottom-up derivation,
top-down derivation and satisfaction relation

Figure 1: Relations between the semantics

particularly, from its metric semantical branch ([BZ82], [BKMOZ86], [BM88], [B88],
[KR88], [BK8&8], ...). They consist of the operational semantics Ocn, characterizing
computations by means of streams, and of the denotational semantics Den, charac-
terizing them, in a compositional way, via tree-like structures. All these semantics
have been related throughout the paper, thanks to propoesitions 6, 14, 24, 27, 29,
42. They are summed up in figure 1a).

The minimal relations have only been stated in the paper. From them, it is
possible to deduce other relations, for instance to connect Den with Decly. It is fur-
thermore impossible to add nonredundant relations. For instance, it is impossible
to relate Oy and O,y since the former essentially delivers the results of the com-
putation and the latter basically delivers histories of the computation. Similarly,
it seems impossible to guess the choice point to build Den from O,,. However, it
is worth noting that although the semantics are different, it is possible to further
connect the bottom-up derivation, the top-down derivation and the model theory.
Propositions 4, 26, 28 and have, respectively, established the equivalence between
the bottom-up and top-down derivations, the equivalence between the bottom-up
derivation and the satisfaction relation, and the equivalence between the top-down
derivation and the satisfaction relation. Hence, figure 1a) can be completed by
figure 1b).

The parallel version of contextual logic programming presented in this paper is
quite simple: it just includes or-parallelism and and-parallelism. It is not considered
as a practical language to program with but rather as a first case study model. It
is however quite interesting in the sense that it captures both the basis of contex-
tual logic programming and of parallel logic programming. Our future work, under
development, will be based on the results presented in this paper. It will be con-
cerned with more elaborated versions including inheritance, guard-like constructs
with related commitment operations, suspension conditions and some other more
elaborated mechanisms (under development) for communication and concurrency.
Also, we are trying to develop semantics closer to real computation in treating or-
parallelism as real parallelism and not just as non-deterministic choice as in the

213

paper. Finally, we are investigating the relationship of our model with semantics of
the partial order type such as pomsets or event structures (see e.g. [Gr81], [Pr86],
[BW90]).

Acknowledgments

The idea of contextual logic programming has been developed in joint work with
A. Porto, with whom we have discussed many of the topics of this paper. We also
thank the C.W.I. concurrency group, composed by J.W. de Bakker, F. de Boer,
F. van Breughel, A. de Bruin, E. Horita, P. Knijnenburg, J. Kok, J. Rutten, E.
de Vink and J. Warmerdam, for comments on a previous version of this paper. In
particular, the first author wishes to thank E. Horita and J. Warmerdam for their
“every-day” intensive discussions.

The research reported herein has been partially supported by Esprit BRA 3020
(Integration). The first author likes to thank also the Belgian National Fund for
Scientific Research as well as the University of Namur for having supported his past
research, from which some ideas of this paper have arisen. The second author also
thanks the Instituto Nacional de Investigagao Cientifica for partial support.

References

[AR89] America P., Rutten J.J.M.M., Solving reflexive domain equations in a cat-
egory of complete metric spaces, Journal of Computer and System Sciences,
Vol 39, no. 3, 1989, pp. 343-375.

[B88] de Bakker J.W., Comparative Semantics for Flow of Control in Logic Pro-
gramming without Logic, Report CS-R8840, Center for Mathematics and
Computer Science, Amsterdam, The Netherlands, 1988, to appear in Infor-
mation and Computation.

[BK88] de Bakker J.W., Kok J.N., Uniform Abstraction, Atomicity and Contrac-
tions in the Comparative Semantics of Concurrent Prolog, Proc. of FGCS,
1988, pp. 347-355.

[BKMOZ86] de Bakker J.W., Kok J.N., Meyer J.-J.Ch, Olderog E.-R., Zucker J.I.,
Contrasting Themes in the Semantics of Imperative Concurrency, in Current
Trends in Concurrency : Overviews and Tutorials (J.W. de Bakker, W.P. de
Roever, G. Rozengerg, eds.), Lecture Notes in Computer Science, Vol. 224,
Springer-Verlag, 1986, pp. 51-121.

[BKRP89] de Boer F.S., Kok J.N., Palamidessi C., Rutten J.J.M.M., Semantic
Models for a Version of PARLOG, Proc. of the 6th Int. Conf. on Logic
Programming, 1989, pp. 621-636.

[BM88] de Bakker J.W., Meyer J.-J.Ch., Metric Semantics for Concurrency, BIT,
28, 1988, pp. 504-529.

[BW90] de Bakker J.W., Warmerdam J., Metric Pomset Semantics for a Concurrent
Language with Recursion, to appear in Proc. of the 18e Ecole de Printemps
d’Informatique Théorigue, La Roche-Posay, France, 1990.

[BZ82] de Bakker J.W., Zucker J.I., Processes and the Denotational Semantics of
Concurrency, Information and Control 54, 1982, pp.70-120.

[En77] Engelking R., General Topology, Polish Scientific Publishers, 1977.

[Gr81] Grabowski J., On Partial Languages, Fundamenta Informaticae IV.2, 1981,
pp- 427-498.

214

[Ja89] Jacquet J.-M., Conclog : a Methodological Approach to Concurrent Logic
Programming, Ph.D. Thesis, University of Namur, Belgium, 1989, to appear
as Lecture Notes in Computer Science, Springer-Verlag.

[J290] Jacquet J.-M., Semantics for a Concurrent Contertual Logic Programming
Language, to appear as Technical Report, Center for Mathematics and Com-
puter Science, Amsterdam, The Netherlands.

[KR88] Kok J.N., Rutten J.J.M.M., Contractions in Comparing Concurrency Se-
mantics, Proc. 15th ICALP (T. Leist, A. Salomaa, eds.), Lecture Notes in
Computer Science, Vol. 317, Springer-Verlag, 1988, to appear in Theoretical
Computer Science.

[L189] Lloyd J., Foundations of Logic Programming, Springer-Verlag, 1987.

[M86] Miller D., A Theory of Modules for Logic Programming, Proc. of the 1986
Sympositum on Logic Programming, 1986, pp. 106-114.

[M89] Miller D., A Logical Analysis of Modules in Logic Programming, Journal of
Logic Programming (6), 1989, pp. 79-108.

[Mo89] Monteiro L., The Semantics of Contextual Logic Programming, Technical
Report UNL DI-5/89, Departamento de Informdtica, Universidade Nova de
Lisboa, Portugal, 1989.

[MP89] Monteiro L., Porto A., Contextual Logic Programming, Proc. of the 6th
Int. Conf. on Logic Programming, 1989, pp. 284-299.

[Pa88] Palamidessi C., A Fizpoint Semantics for Guarded Horn Clauses, Technical
Report CS-R8833, Center for Mathematics and Computer Science, Amster-
dam, The Netherlands, 1988.

[Pa90] Palamidessi C., Algebraic Properties of Idempotent Substitutions, Technical
Report TR-32/89, Dipartimento di Informatica, University of Pisa, Pisa, Italy,
1989, to appear in Proc. of the 17th ICALP, 1990.

[P181] Plotkin G.D., A Structural Approach to Operational Semantics, Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University,
1981.

[Pr86] Pratt V., Modelling Concurrency with Partial Orders, Int. Journal of Par-
allel Programmaing, 15, 1986, pp. 33-71.

